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Abstract
Performance-based earthquake engineering (PBEE) has traditionally implied the verifica-
tion of limit states at different earthquake intensities, where recent developments advocate 
a more risk-consistent approach. This has been primarily investigated for assessing exist-
ing structures and typically involves extensive analyses using detailed numerical models 
and ground motions. For new design, structures must be sized and detailed before more 
advanced numerical verifications are performed and the final design solution is established. 
In assessment, simplified procedures have been developed to incorporate further aspects 
of PBEE and typically comprise extensions to traditional structural analysis methods. 
Displacement-based assessment is one such method and while it has been extended for 
PBEE in the past, its use in a risk-oriented context still requires some validation. This arti-
cle presents such a study, where recent developments in simplified analysis to estimate the 
exceedance rates of both storey drift and floor acceleration in reinforced concrete frames 
are described. This gives a method that is simple in its application, since it doesn’t require 
extensive and detailed numerical modelling or analysis, but also sufficiently accurate in its 
quantification of performance. While not intended as a substitute to extensive verification 
analysis, such a method for quantifying structural demand exceedance rates can be used to 
check results and provide better understanding to risk analysts. The work described herein 
can also be used in simplified verification analysis of new designs, whereby trial solutions 
may be verified in a relatively easy manner before more extensive verifications are carried 
out via non-linear dynamic analysis. It represents a further extension to existing simpli-
fied methods that strive toward more advanced performance quantification in line with the 
needs and goals of PBEE.
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1 Introduction

The need for a next-generation approach to quantify building performance saw the intro-
duction of limit states via Vision 2000 (SEAOC 1995) during the 1990s in the US. While 
this document was well-intended, it has been critiqued in recent years (e.g. Vamvatsikos 
2017) for being an intensity-based assessment approach that skirted some issues relating 
to risk-consistency. The Cornell-Krawinkler performance-based earthquake engineering 
(PBEE) framework (Cornell and Krawinkler 2000; Cornell et al. 2002) somewhat allevi-
ated these issues in the early 2000s. It allows for a comprehensive description of perfor-
mance by convoluting probabilistic descriptions of seismic hazard and structural response 
to compute the mean annual frequency of exceedance (MAFE) of a given limit state. There-
fore, the exceedance rate of a certain performance limit state in the structure is focused on 
rather than the exceedance rate of some level of ground shaking.

Numerous simplified methods have been developed over the years; for example, Fajfar 
and Dolšek (2012) introduced a pushover-based method by extending aspects of the well-
established N2 method. One slight difficulty is that although the method represents a sim-
plification, it requires a detailed numerical model in which dissipative zones are fully sized 
and knowledge of the placed reinforcement and expected member capacities are required. 
A pushover analysis is then conducted, which for new design may become a strenuous 
task as designs are being revised and iterated. Other approaches have been proposed, with 
Welch et al. (2014) extending the displacement-based assessment (DBA) approach (Priest-
ley 1997; Priestley et al. 2007) by incorporating the initial risk developments of the Cornell 
et al. (2002) PBEE framework.

Since damage, and subsequently monetary loss, is related to demand parameters like 
storey drift and floor acceleration, it is arguably more desirable to compute the MAFE of 
certain levels of storey drift or floor acceleration. Analysis methods like DBA have been 
extended to risk-related quantities such as MAFE in the past without many studies to spe-
cifically examine the degree to which they are actually capable of doing so. Furthermore, 
most of the work stemming from Cornell et  al. (2002) has focused on the estimation of 
storey drift and relatively little attention has been paid to floor accelerations, despite their 
importance in overall building performance.

This article extends simplified methods of analysis for reinforced concrete (RC) frames 
in a more risk-oriented manner. It relates structural demand to an intensity of ground shak-
ing in what is herein referred to as a demand–intensity model. With these demand–intensity 
models, the closed-form solution introduced originally by Cornell et al. (2002) is extended 
to give a clear procedure with which to assess and verify structures for both storey drift 
and floor acceleration demand. This will be applied to two case study buildings and results 
are compared with extensive numerical analyses and direct integration of the structural 
response with seismic hazard to compute the MAFE and demonstrate its suitability.

2  Simplified quantification of MAFE

2.1  Establishing a demand–intensity relationship for storey drift

Maximum peak storey drift (MPSD) along the height of a building is a well-known indi-
cator of both structural and non-structural damage. Therefore, the ability to accurately 
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quantify a building’s MPSD with increasing intensity is of paramount interest. Priestley 
(1997) outlined how by knowing the critical mechanism of a structure, the subsequent 
response can be established in a relatively simple manner (Fig. 1). Depending on the struc-
tural typology and likely mechanism, a number of empirical expressions were provided 
by Priestley et  al. (2007) to estimate this. Essentially, for a given MPSD in a structure, 
θmax, the mechanism for a ductile RC frame is expected to be a first mode-based beam-
sway mechanism (Fig. 1a). Other methods, such as the generalised interstorey drift spec-
trum (Miranda and Akkar 2006) looked to characterise the response of structures using a 
combination of flexural and shear beam response while also accounting for higher mode 
response contributions. However, it is assumed herein that investigated structures can be 
sufficiently characterised via their first mode response. Once the mechanism and force–dis-
placement behaviour of the structure have been identified, the performance can be quanti-
fied with respect to some definition of seismic hazard. This relies on the use of an equiva-
lent SDOF conversion (Fig. 1b, c) and requires the displaced shape and mass at each floor 
level j, denoted as Δj and mj, respectively. The effective mass, me, effective height, He, 
and displacement capacity, Δcap, can be computed (Fig. 1b). The base shear, Vb, effective 
period, Te, and system ductility, μ, can then be computed and used to estimate the spectral 
displacement modification factor, η, to account for system non-linearity, denoted as f(μ) 
in Fig. 1c. At this point, the effective period and elastic spectral demand at the effective 
period, Sd(Te), are known. With some definition of seismic hazard, the return period of the 
seismic action, TR, can be established as illustrated in Fig. 1d via the blue arrows. Repeat-
ing this for numerous values of θmax returns its relationship with increasing intensity (i.e. 
demand–intensity model).

As described above, the intensity required to exceed a given value of θmax can be identified 
at a secant period, Te. However, since Te will differ for each value of θmax in DBA, the resulting 
intensity measure (IM) (i.e. Sd(Te)) will also indirectly differ at increasing levels of deforma-
tion since the effective periods are no longer the same. In situations where a smoothed code-
defined spectrum is used (Fig. 1d), the spectral displacement at the first-mode period, Sd(T1), 
can simply be determined as shown in Fig. 1d via the red arrows once the spectrum is known. 
A first-mode spectral acceleration, Sa(T1) can then be determined, where the interchangeabil-
ity between Sd(T) and Sa(T) is implicit. Now the IM is now consistent for all values of θmax 
and the demand–intensity relationship (i.e. θmax vs. Sa(T1)) can be established. This approach 
works in situations where the seismic demand is represented by a smoothed design spectrum 
typically found in codes, but more recent advances advocate the use of probabilistic seismic 
hazard analysis (PSHA) results in the form of a uniform hazard spectra (UHS) that does not 
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Fig. 1  Fundamental steps of DBA as described by Priestley et al. (2007), where an equivalent SDOF and 
identify the intensity required to result in the defined level of drift
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have a fixed spectral shape. By taking advantage of the fact that a site hazard curve determined 
via PSHA can be represented using a closed-form polynomial expression, “Appendix” derives 
a relationship to convert Sa(Te) to Sa(T1) and address this issue. This demand–intensity rela-
tionship can be represented as linear in logspace for MPSD as:

where mθ and bθ are coefficients fitted to structural analysis results.

2.2  Establishing a demand–intensity relationship for floor acceleration

Establishing a relationship between the peak floor acceleration (PFA) and ground motion 
intensity has received some attention in recent years, with studies (Calvi and Sullivan 2014) 
looking to estimate floor response spectra, whereas others (FEMA 2012) have proposed sim-
plified means of estimating just PFA. Research by Welch (2016) accounted for aspects such as 
the influence of structural non-linearity and higher modes for the estimation of floor response 
spectra (Fig.  2). Knowing the spectral demand at mode i for a given definition of seismic 
input, Sa(Ti), the associated PFA profile, aj, shown in Fig. 2c is combined using (2) by consid-
ering the inelastic contribution of the first two modes vibration and the elastic contribution of 
the higher modes.

where Ri are the individual modal reduction factors and aj,i is the PFA in mode i of n modes 
considered at the jth floor given by:

where ϕj,i is the ith mode shape value at floor j and Γi is the modal participation factor. The 
modal reduction factors are given as Ri = μαi , where μ is the ductility of structure and αi 
are the modal reduction exponents described in Welch (2016) for moment frames as:
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Fig. 2  Overview of the simplified method proposed by Welch (2016) to estimate PFA
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with higher modes being taken as zero. λi is given by:

Knowing the PFA profile, aj, the maximum peak floor acceleration (MPFA) along 
the height, amax, for a known seismic input Sa(T1) is determined as:

This approach requires some parameters to be identified, most notably the individ-
ual elastic periods of vibration, Ti, mode shapes, φj,i and the modal reduction factors, 
Ri. Modal properties are typically obtained using an eigenvalue analysis, meaning that 
some kind of a numerical model would be needed. A relatively simple elastic model 
may be constructed to conduct an eigenvalue analysis of the structure and obtain the 
modal properties, without any explicit need for member force–deformation relation-
ships that would be required at a later stage for extensive verification. As the purpose 
of these simplified methods of estimating MAFE is not to substitute extensive analysis 
via numerical modelling but rather serve as a support tool to verify and better under-
stand results, this need of a numerical model is not envisioned to be a limiting factor.

In the end, the demand–intensity relationship for MPFA (i.e. amax vs. Sa(T1)) is 
established. However, this is slightly different to the handling of MPSD since MPFA 
tends to saturate with increasing intensity as a result of structural yielding. This typi-
cally means that a single linear fit in logspace is no longer sufficient over the entire 
range of response. To this end, O’Reilly and Monteiro (2019) have proposed the fol-
lowing bilinear demand–intensity model:

where ma,lower, ma,upper, ba,lower and ba,upper are coefficients quantified from response analysis 
results. The yield spectral acceleration of the structure, Say(T1), is used to define this inter-
face between the two zones of response. Assuming that the structure is dominated by the 
first-mode response, this can be estimated as follows:

where Vy identified from the assessment results of Sect. 2.1 and me is as defined in Fig. 1c.
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2.3  Estimating the MAFE

The previous sections discussed the quantification of demand–intensity relationships for 
both MPSD and MPFA. Cornell et al. (2002) described a simplified closed-form solution 
(Fig. 3) to compute the MAFE with 50% confidence level, λ, using linear demand–intensity 
models as:

where H is the site hazard model, Ĉ is the median capacity of a limit state, m and b are 
generalised demand–intensity model terms, k is a site hazard term and the term βTOT repre-
sents the total uncertainty from both demand and capacity.

The demand–intensity relationships outlined in previous sections can now be used to 
compute the MAFE of a given value of θmax or amax. Assuming a demand–intensity rela-
tionship with coefficients mθ and bθ in (1) for MPSD, Vamvatsikos (2013) further devel-
oped the initial proposal by Cornell et al. (2002) in (11) and derived more accurate expres-
sions with a more refined site hazard curve fit via the parameters k0, k1 and k2 described in 
“Appendix” to give:

where φ′θ is given by:

and the term �2
TOT,�

 is the total MPSD dispersion.
For MPFA-based limit states, a bilinear demand–intensity model is adopted and charac-

terised by the best-fit parameters ma,lower, ma,upper, ba,lower and ba,upper in (9) and the MAFE is 
given in O’Reilly and Monteiro (2019) as:
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Fig. 3  Illustration of the computation of the MAFE of a given limit state capacity in a closed-form solution 
via the demand–intensity model and site hazard curve
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where Flower(Say(T1)) and Fupper(Say(T1))) are the lognormal cumulative density function 
values with corresponding mean values of μlower and μupper and standard deviations of σlower 
and σupper, respectively, which when using the respective coefficients in (9) are described by 
(15)–(18). Again, the term �2

TOT,a
 is the total dispersion related to the MPFA.

3  Case study application

The previous section outlined a closed-form methodology to computed the MAFE of both 
storey drift-based and floor acceleration-based limit state definitions. To demonstrate that 
these simplified methods are in fact capable of estimating the MAFE with reasonable accu-
racy, two case study buildings are examined here.

Two case study buildings from Haselton et al. (2007) were utilised and comprise a 4 and 
8 storey RC moment frame building, denoted by the building design IDs 1003 and 1011, 
respectively. Further details regarding the structural design details can be found in Hasel-
ton et al. (2007). Numerical models were developed in OpenSees (McKenna et al. 2010) 
using the approach outlined in Haselton et al. (2008). Eigenvalue analyses of the structural 
models returned a first-mode period of vibration of 1.16 s and 1.70 s for the 4 and 8 storey 
frames, respectively, which are consistent with the values found by Haselton et al. (2007).

To demonstrate the applicability of the simplified seismic assessment framework previ-
ously outlined, a location is required to obtain a site hazard model, H(Sa(T)), with repre-
sentative values. A site with stiff soil (i.e. Vs,30 = 500 m/s) situated at a latitude and longi-
tude of [42.35°, 13.40°] in the Italian city of L’Aquila was selected and the OpenQuake 
engine (Monelli et al. 2012) was used to perform PSHA using the SHARE area and fault 
source model (Woessner et  al. 2015). Vibration periods, T, ranging from 0 to 4  s were 
considered. This resulted in the creation of a site hazard surface illustrated in Fig. 4. The 
assessment procedure outlined in Sect. 2.1 using the IM conversion of “Appendix” requires 
that the Vamvatsikos (2013) second-order hazard model fit to be computed for each T con-
sidered, which were also quantified.
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To characterise the response of the aforementioned structures, IDA (Vamvatsikos and 
Allin Cornell 2002) was conducted. A single set of 40 ground motion were selected 
from the NGA-West2 database (Ancheta et al. 2013) whose source and site character-
istics matched those assumed for the chosen site. This was identified by examining the 
hazard disaggregation at the 475-year return period for T = 1.5 s based on the first mode 
periods of two buildings. While this use of a single set of ground motion records is not 
without its criticism, its drawbacks are not expected to greatly influence the conclusions 
drawn herein.

4  Results

4.1  Extensive approach

Using numerical models for each structure, IDA was conducted to characterise the dis-
tribution of both the MPSD and MPFA with respect to intensity. The 16%, 50% and 84% 
fractiles were computed and are shown in Fig.  5. Notably, the MPSD traces follow the 
gradual path towards the right-hand side, with a gradual vertical spread of the 16% and 
84% fractiles away from the median response, reflecting higher record-to-record variability 
in the non-linear range of structural response. This is quite typical of IDA results expressed 
in this format (i.e. MPSD vs. Sa(T1)) for RC frames with a stable and ductile failure mech-
anism. On the other hand, one of the distinct characteristics that can be noted from the 
MPFA results is the tendency of the MPFA values to saturate with increasing intensity, as 
discussed in Sect. 2.2.

Using the median response illustrated in Fig. 6, the demand–intensity models discussed 
in Sect.  2 were fitted with (12) and (14) for MPSD and MPFA, respectively. These are 
illustrated in Fig. 6 for both buildings and demand parameters, where it can be seen how 
the median response is well-represented in each case by the models. For the case of the 
MPFA plots in Fig. 6c, d, the values of Say(T1) illustrated via the dashed horizontal lines 
were estimated using (10).
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4.2  Simplified approach

For the MPSD demand–intensity model, Sect. 2.1 was followed. An initial value of θmax to 
assess the structural response was chosen. Knowing basic building geometry and material 
properties, the displaced shape was estimated, as per Fig. 1a. With the expected displaced 
shape of the structure known, the equivalent SDOF’s properties were computed (Fig. 1b) 
and the displacement reduction factor, η, was estimated using the expression provided by 
Priestley et  al. (2007) for RC frames. The internal member forces generated at this dis-
placed state were computed to give the base shear, Vb, and subsequently the effective 
period, Te, as shown in Fig. 1c. The elastic spectral displacement at the effective period, 
Sd(Te), was then computed as a function of η as shown in Fig. 1d to result in both Sd(Te) 
and Te being known values. The initial period of the structure, T1, was estimated as a func-
tion of Te and μ so that the corresponding elastic spectral acceleration, Sa(T1), could be 
computed using the approach outlined in “Appendix”. With both θmax and Sa(T1) known, 
this meant that a single point of the MPSD demand–intensity model was identified. Repeat-
ing the above steps for different input values of θmax further populated this demand–inten-
sity model described in (1). Table 1 presents an overview of the pertinent values obtained 
from the assessment at a number of MPSD values. It can be seen how the points examined 

0 1 2 3 4

Max. Peak Storey Drift, max [%]

0

0.5

1

1.5

2
In

te
ns

ity
 M

ea
su

re
, S

a 
(T

1) [
g]

(a) 4 Storey RC Frame

0 1 2 3 4

Max. Peak Storey Drift, max [%]

0

0.5

1

1.5

2

(b) 8 Storey RC Frame

Indiv. IDA Trace
16% Fractile
Median
84% Fractile

0 0.5 1 1.5 2 2.5 3

Max. Peak Floor Acceleration, amax [g]

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 M
ea

su
re

, S
a 

(T
1) [

g]

(c) 4 Storey RC Frame

0 0.5 1 1.5 2 2.5 3

Max. Peak Floor Acceleration, amax [g]

0

0.2

0.4

0.6

0.8

1

(d) 8 Storey RC Frame
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cover the full range of response of the structure, with μ varying from 0.66 to 2.90. Taking 
these values of MPSD demand and intensity, the parameters in (1) were found by perform-
ing a least squares regression, illustrated in Fig. 7. Comparing these to those identified in 
Fig. 6 using the IDA results, a good match is noted. The fact that the two demand–inten-
sity models are almost the same is noted not to be a general trend but rather a coincidence 
and the coefficients would be expected to vary for other typologies. Furthermore, the lin-
ear nature is also expected to hold in situations where the structure does not have a short 
first mode period of vibration (i.e. where the “equal displacements” approximation is valid 
and bθ is approximately 1.0) or suffer from significant strength or stiffness degradation. An 
example of where this is not the case is for RC frames with masonry infill, where O’Reilly 
and Monteiro (2019) have shown how their demand intensity model is quite non-linear. A 
recent study by Nafeh et al. (2019) has also shown that their seismic behaviour ought to be 
treated with care compared to other structural systems such as the ones examined here. 

For the case of estimating the MPFA demand–intensity model, Sect.  2.2 was imple-
mented. The modal participation factor and modal masses were computed and Table  2 
outlines these for the first four modes of both buildings. To estimate the yield spectral 
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Table 1  Overview of the simplified assessment results for MPSD for both case study buildings

MPSD θmax 4 Storey 8 Storey

0.50% 1.00% 1.75% 2.50% 0.50% 1.00% 1.75% 2.50%

Base shear Vb (kN) 1609 2475 2899 2899 1267 2082 2231 2113
Equivalent SDOF displace-

ment
Δcap (m) 0.051 0.102 0.178 0.255 0.092 0.185 0.323 0.461

Effective mass me (t) 1251 1251 1251 1251 1148 1148 1148 1148
Ductility μ 0.71 1.21 2.00 2.85 0.66 1.19 2.03 2.90
Effective period Te (s) 1.25 1.43 1.74 2.08 1.82 2.00 2.56 3.15
Initial period T1 (s) 1.25 1.25 1.25 1.25 1.82 1.82 1.82 1.82
Hazard coefficients at Te k0 × 10−7 285 224 130 60.3 100 68.9 17.5 7.76

k1 2.39 2.42 2.50 2.75 2.60 2.70 3.14 3.56
k2 0.17 0.17 0.17 0.22 0.19 0.21 0.27 0.37

Hazard coefficients at T1 k0 × 10−7 285 285 285 285 100 100 100 100
k1 2.39 2.39 2.39 2.39 2.60 2.60 2.60 2.60
k2 0.17 0.17 0.17 0.17 0.19 0.19 0.19 0.19

Spectral acceleration at Te Sa(Te) (g) 0.13 0.24 0.36 0.39 0.11 0.22 0.30 0.31
Spectral acceleration at T1 Sa(T1) (g) 0.13 0.26 0.49 0.69 0.11 0.25 0.53 0.64

Fig. 7  Results of the simpli-
fied assessment for MPSD with 
the coefficients fitted with least 
squares regression for user-
defined values of θmax
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Table 2  Estimation of modal properties, relative spectral demands and modal reduction exponents as per 
the explicit method proposed by Welch (2016)

Mode i 4 Storey 8 Storey

1 2 3 4 1 2 3 4

Period Ti (s) 1.16 0.37 0.19 0.12 1.70 0.62 0.35 0.23
Modal participation factor Γi 1.31 − 0.44 − 0.28 − 0.17 1.37 − 0.55 0.29 − 0.18
Normalised spectral accel-

eration demand
Sa(Ti)/Sa(T1) 1.0 3.2 4.9 4.6 1.0 3.5 5.8 7.3

Relative modal acceleration λi 1.00 1.08 0.61 0.13 1.00 1.42 1.23 0.90
Modal reduction exponent αi 1.00 0.67 0.28 0.00 1.00 0.82 0.55 0.00
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acceleration of the structure, Say(T1), the base shear at yield was computed as per (10) to 
be 0.22 g and 0.17 g for the 4 and 8 storey buildings, respectively. To estimate the relative 
spectral demands in each mode, the mean values of the ground motions scaled to the same 
value of Sa(T1) for both structures was used and are illustrated in Fig. 8 for both case study 
structures. By doing this, the relative spectral demands in different modes of vibration 
were computed with respect to a chosen value of Sa(T1). To estimate the modal reduction 
factors, Ri, the modal reduction exponents αi were computed as a function of the relative 
modal accelerations, λi, and are listed in Table 2. 

The value of MPFA, amax, for an input value of Sa(T1) was estimated by finding the 
SRSS combination using (2) and taking the maximum value using (8). By repeat-
ing this process for a number of Sa(T1) values, the MPFA demand–intensity intensity 
models were established. Care was taken to ensure that sufficient points were chosen in 
both zones of response, corresponding to above and below the yield spectral accelera-
tion, so that the bilinear model could be adequately captured and the salient results are 
listed in Table 3. These values were then used to computed the bilinear demand–intensity 
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Fig. 8  Relative spectral demands on each case study building as determined from the mean value of the 40 
record ground motion set used in IDA

Table 3  Overview of the 
simplified assessment results 
for MPFA for both case study 
buildings

4 Storey 8 Storey

Sa(T1) (g) μ amax (g) Sa(T1) (g) μ amax (g)

0.05 0.22 0.11 0.05 0.30 0.16
0.10 0.45 0.21 0.12 0.71 0.39
0.15 0.67 0.32 0.14 0.83 0.46
0.20 0.90 0.42 0.17 1.00 0.55
0.22 1.00 0.47 0.10 0.59 0.33
0.30 1.35 0.56 0.20 1.19 0.60
0.40 1.80 0.66 0.30 1.78 0.79
0.50 2.25 0.74 0.40 2.38 1.00
0.60 2.70 0.81 0.50 2.97 1.20
0.80 3.60 1.01 0.60 3.57 1.42
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model’s coefficients. The fitted coefficients were constrained to result in a continuous 
demand–intensity model across the transition point. Figure  9 plots the results listed in 
Table 3 and shows the coefficients found in each case. Comparing these to the IDA results 
in Fig. 6, a satisfactory match may also be noted.

5  Validation of simplified estimation of MAFE

For each approach, the MAFE was computed for increasing demand and the results are 
plotted in Fig. 10. In order to make a meaningful comparison between the direct integration 
of the IDA results and the closed-form solutions, compatible assumptions of the various 
dispersion terms needed to be established. Since the IDA results encompass just record-to-
record variability, just the βDR,θ and βDR,a terms are non-zero, and their values are identified 
directly from the IDA results shown in Fig. 6. By implementing these closed-form solu-
tions via both extensive and simplified approaches to quantify the demand–intensity mod-
els, Fig. 10 shows them to give relatively accurate predictions of the MAFE in all cases 
with respect to each other and also the direct integration of the IDA results. This demon-
strates that the use of the simplified approaches outlined previously does indeed provide 
satisfactory predictions of performance when extended to PBEE both in terms of MPSD 
and also MPFA. As noted previously, such a validation has been lacking in the literature 
to date. It has been used in the past by Welch et al. (2014) but such a direct comparison of 
the MAFE of storey drift was not explicitly considered. In addition, a linear hazard curve 
fit was used when studies (Bradley and Dhakal 2008; Vamvatsikos 2013) have advocated 
moving away from and adopting more accurate expressions to represent the hazard, such as 
that adopted here. Furthermore, the approach of converting the IM outlined in “Appendix” 
is not present in previous work on this specific topic.

To further demonstrate the comparison between the values computed by the extensive 
and simplified approaches, a further example was assessed with non-zero dispersion terms to 
account for the other sources of uncertainty that would typically be required to be considered 
in practice. For the drift-based limit state, this capacity threshold was set as 1.0% and for the 
floor acceleration-based limit state, this was set as 0.25 g as an illustrative example. For both 

Fig. 9  Results of the simplified 
assessment for MPFA with the 
coefficients fitted for values of 
Sa(T1)
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approaches, the hazard model parameters described previously were utilised and are listed in 
Table 4 along with the demand–intensity model parameters for both assessment approaches. 
Since deterministic limit state definitions are being used, this implies that the terms βCR and 
βCU are zero. The βDR and βDU terms, on the other hand, describe the natural randomness 
(i.e. aleatory uncertainty mainly related to record-to-record variability) and inherent uncer-
tainty (i.e. epistemic uncertainty typically related to the modelling uncertainty) of the demand, 
respectively. The βDR terms were quantified using the fractiles plotted in Fig. 6, whereas rea-
sonable values were chosen for the modelling uncertainty, βDU,θ and βDU,a based on empir-
ical quantification studies relating to the response parameter and limit state of interest. For 
both demand parameters, Table 4 shows how the MAFE calculated using either the exten-
sive or simplified approach outlined here give similar results for both structures and demand 
parameters.
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Fig. 10  MAFE versus MPSD and MPFA for the case study buildings using different analysis approaches
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Table 4  Computation of the MAFE of MPSD and MPFA following an extensive and more simplified 
approach

4 Storey 8 Storey

Extensive Simplified Extensive Simplified

k0 × 10−7 285 285 100 100
k1 2.39 2.39 2.60 2.60
k2 0.17 0.17 0.19 0.19
MPSD-based assessment
θmax 1.0 1.0 1.0 1.0
mθ 3.45 3.61 4.06 3.59
bθ 1.03 0.97 0.99 0.92
βDR,θ 0.12 0.25 0.25 0.25
βDU,θ 0.30 0.30 0.30 0.30
βCR,θ 0.00 0.00 0.00 0.00
βCU,θ 0.00 0.00 0.00 0.00
β2

TOT,θ 0.104 0.104 0.151 0.151
s (g) 0.30 0.27 0.24 0.25
H 3.98E−04 5.05E−04 2.70E−04 2.56E−04
φ’θ 0.968 0.964 0.944 0.936
λ  (10−3) 0.477 0.614 0.368 0.369
MPFA-based assessment
amax 0.5 0.5 0.5 0.5
ma,lower 2.18 2.10 2.99 3.25
ma,upper 1.19 1.07 1.83 1.99
ba,lower 1.01 1.00 0.93 1.00
ba,upper 0.61 0.55 0.65 0.72
slim (g) 0.22 0.22 0.17 0.17
alim (g) 0.48 0.47 0.57 0.55
βDR,a 0.36 0.36 0.49 0.49
βDU,a 0.30 0.30 0.30 0.30
βCR,a 0.00 0.00 0.00 0.00
βCU,a 0.00 0.00 0.00 0.00
β2

TOT,a 0.217 0.217 0.334 0.334
φ’a,lower 0.933 0.932 0.870 0.886
φ’a,upper 0.835 0.806 0.767 0.804
s (g) 0.24 0.25 0.14 0.15
H 6.11E−04 5.67E−04 7.43E−04 6.66E−04
Glower 0.0009 0.0008 0.0012 0.0011
Gupper 0.0014 0.0015 0.0019 0.0015
σlower 0.208 0.210 0.336 0.314
σupper 0.325 0.353 0.450 0.413
μlower − 1.841 − 1.824 − 2.561 − 2.430
μupper − 2.355 − 2.492 − 3.108 − 2.863
Flower 0.947 0.937 0.999 0.998
Fupper 0.996 0.997 1.000 1.000
λ  (10−3) 0.81 0.75 1.24 1.06
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6  Role in verification of new designs

The topic discussed here nominally describes a simplified method of estimating MAFE 
but is noted to have a potentially important role in the refinement and verification of new 
designs. The idea is not to replace extensive verification analysis, but provide a simple 
way in which candidate designs can be checked against the performance objectives they 
aim to deliver. This was noted by Gokkaya et  al. (2016), where the safety of structures 
designed using recommended drift limits the revised US code ASCE 7 (ASCE 2017) were 
shown to be unconservative. This was shown via extensive dynamic analysis whilst also 
ensuring various sources of uncertainty were accounted for. A simplified method like the 
one described here could also have demonstrated the suitability of the design in a similar 
manner.

Recently, a conceptual design framework (O’Reilly and Calvi 2019) was proposed 
(Fig. 11a–d), whereby designers begin by focusing solely on the performance objectives 
and follow some simplifying assumptions to arrive at a number of feasible design solu-
tions. An attractive aspect of this framework is that it brings both storey drift and floor 
acceleration into the design procedure, then tells the designer which kinds of geometry and 
material would be required to respect the initial performance objectives for different struc-
tural systems (Fig. 11d). It is at this point that designers must choose one of these candidate 
solutions, detail and then verify them with respect to the initial performance objectives 
(Fig. 11e–h). However, given that a number of assumptions need to be made to arrive at the 
feasible design solutions (Fig. 11a–c), some simplified verification and refinement of the 
chosen structural system at a design spreadsheet level would be desirable. This is contrary 
to the case where an extensive verification analysis is carried out using detailed numerical 
models and analysis methods, only to arrive at the conclusion that a slight design modifi-
cation is required and the whole process needs to be then repeated (i.e. arriving at the red 
line as opposed to the green line in Fig. 11g). Often, simplified methods can demonstrate to 
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designers that for a specific building typology, their final design solution is within a reason-
able range of what an extensive analysis would give (i.e. the blue line in Fig. 11g). In cases 
where a candidate design may be identified to possess some performance issues during 
simplified verification, the design may be adjusted in a spreadsheet environment with rela-
tive ease. The subsequent extensive verification analysis can then be carried out just once 
with an increased degree of a priori confidence.

7  Conclusions

Recent developments in performance-based earthquake engineering (PBEE) are gradually 
becoming more risk-oriented. While great strides have been made in the research commu-
nity to develop more advanced aspects beneath the overarching umbrella of PBEE, there 
is still a need for simple procedures and methods that do not necessarily require time-con-
suming numerical analyses. This article has discussed such a simplified procedure, where 
previous analysis methods have been extended and tested to allow the estimation of the 
mean annual frequency of exceeding (MAFE) of both storey drifts and floor accelerations.

For storey drifts, a displacement-based approach was described and further developed 
to account for aspects regarding intensity measure consistency. These relate to the fact that 
when simplified models based on effective stiffness are used in risk assessment, additional 
attention to detail is required by the analyst to ensure that the correct limit state exceedance 
rate is computed. This aspect is currently absent from approaches utilising a code-defined 
response spectrum. For more advanced approaches utilising seismic hazard analysis results 
directly, a solution to incorporate them has been proposed here.

For floor accelerations, a simplified procedure has been adopted to allow the MAFE of 
a given peak floor acceleration in a structure to be estimated. This builds upon a recently 
developed demand–intensity model where the notably bilinear nature of the peak floor 
acceleration in a typical structure to increasing intensity means that past approaches 
required an extra degree of care to implement. The developments described in this work 
not only alleviate some difficulties on the risk computation side but also utilise a novel 
method to compute floor accelerations via simplified methods.

This overall simplified risk assessment procedure has been outlined collectively and 
compared to the result of more extensive analysis using detailed numerical models and 
numerous ground motion simulations. The results have shown that the simplified proce-
dure proposed here is, in fact, capable of providing reliable estimates of MAFE for both 
demand parameters typically examined in PBEE, a study that has been thus far lacking in 
the literature.

Acknowledgements The work presented in this paper has been developed within the framework of the pro-
ject “Dipartimenti di Eccellenza”, funded by the Italian Ministry of Education, University and Research at 
IUSS Pavia.

Appendix: Intensity measure conversion

For a smoothed code spectrum of uniform hazard, the shape is generally fixed and the 
corresponding value of Sd(T1) can be simply read by scaling it to match the identi-
fied point for the equivalent system and reading the value at T1, as shown in Fig. 12a. 
When using PSHA data, where seismic hazard data is typically provided for a specified 
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number of vibration periods, the conversion becomes slightly more complicated. Con-
sider Fig.  12b, where the site hazard curves for two different vibration periods are 
known. What is essentially happening is that knowing Sa(Te) for a given return period 
or mean annual frequency of exceedance (MAFE), Sa(T1) can be computed via the rela-
tion between the hazard curves at the two vibration periods. Since PSHA data is typi-
cally provided as raw data in the form of a site hazard curve, H(Sa), it would be desir-
able if a closed-form means of IM conversion could be established. Here, a relatively 
simple means of converting from one intensity measure to another was sought. It relies 
simplifying the site hazard curve, but it is noted that other more detailed and thorough 
ways of converting from one intnesity measure to another are available (e.g. Suzuki and 
Iervolino 2019).

For the site hazard curves shown in Fig. 12b, some past researchers have attempted 
to provide means with which to fit expressions. Cornell et al. (2002) described how the 
H(Sa) relationship could be approximated by a straight line in logspace. This linear rep-
resentation was later expanded to become a second-order polynomial, which also better 
represents the hazard curve over a wider IM range and is described by:

where k0, k1 and k2 are best-fit parameters to be established for each individual hazard 
curve. As shown in Fig. 12b, these will be two separate hazard curves at Te and T1 and are 
denoted He and H1, respectively. What is of interest here is the value of Sa(T1) when Sa(Te) 
is known when He and H1 are equal. Assuming that the best-fit parameters for both hazard 
curves are known, it follows that:

Setting He equal to H1 gives:

Rearranging to give:

(19)H(Sa) = H = k0 exp
(
−k1 ln Sa − k2 ln

2 Sa
)
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Fig. 12  Identification of the seismic demand at the first mode period using a smoothed code spectra, or b 
site hazard curves
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and taking the natural logarithm of both sides then gives:

Letting ln Sa(T1) equal X and rearranging gives:

which results in a quadratic polynomial that can be solved as:

Substituting back in for X gives:

which will return two solutions, one of which will be unrealistic. This expression provides 
a means with which a common intensity measure can be found for any effective period of 
vibration, Te, to give a consistent demand–intensity relationship in Sa(T1).
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